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my employer’s opinions and/or real facts

I’ve worked on fairly-high-volume ISP wifi deployment and network maintenance, so I 
know some stuff about wifi and what can go wrong.  I’ve also looked into small-scale 
mesh-like systems in residential use cases: adding extra wifi access points in a single 
home, which all route back through the home’s wired internet connection.  Just doing 
those super-small scale “mesh” deployments, in large numbers for paying customers 
who call technical support when there’s a problem, taught me a lot about what works 
and what doesn’t.

I’m hoping some of what I learned from this work will be useful to the communities 
building much larger free mesh deployments, where each network is much more 
complicated but the user feedback channels are often missing.

mailto:apenwarr@gmail.com
mailto:apenwarr@gmail.com
mailto:apenwarr@gmail.com
mailto:apenwarr@gmail.com
mailto:apenwarr@gmail.com
mailto:apenwarr@gmail.com
https://www.youtube.com/watch?v=vJL8xrQ3gOE&feature=youtu.be&list=PL3bvPCw5QCLJ-VJPamVeQx-UPNBVyaopj


What is “consumer grade?”
● Something that works even for people who don’t know how to use openwrt.

(Hardly anyone, right?)

Since I’m talking about “Consumer Grade Wifi” I guess we’d better start by defining 
what I mean by “consumer grade.”  Consumers are non-technical, can’t install their 
own router firmware(!),  don’t even know what openwrt is(!!), and just want the 
Internet to “work.”  This is tricky because, as we all know, the Internet does not in fact 
work most of the time.  So our job is to create a compelling illusion that it works.

Most importantly, typical consumers can’t be assumed to know how to fix things when 
they go wrong.  People have been trained over the years to power cycle their routers 
in case of a problem, which is the most you can expect (and it means they’ll power 
cycle the modem at the slightest provocation, whether it’s likely to fix anything or not).



Consumers want boring things

Published a KB article 
about expected wifi 

speeds

Here’s an example of what consumers care about.  As an ISP, we get a lot of phone 
calls from customers every day, with various technical questions and problems.  One 
of the most common is to complain that “the Internet is way slower than I’m paying 
for.”  Our particular ISP advertised gigabit speeds, which is completely true (we 
delivered gigabit speeds through a wired link into the home), but nobody, including us, 
actually has wifi equipment capable of going at a gigabit, and nobody wants to hook 
their computer up through a wire anymore.

As a result, we got many phone calls asking for help debugging why, say, their 1x1 
802.11n phone couldn’t get gigabit speeds.

This is a graph of several years of our wifi-related phone calls.  You can see that 
there was a fairly high rate at the beginning (where we launched something or other), 
which trailed down to a steady state.  Let’s not talk about that big spike in the middle; 
it makes me twitchy.  What I want to point out is that we worked on wifi for several 
years, improving reliability, speed, configurability, and so on, but none of it had much 
direct impact on the number of support calls.  Happy customers might have been 
happier over time (we did have statistics that they complained less about wifi bugs 
overall), but they still phoned us at about the same rate...

...except for one major event toward the right, which I pointed out here.  That’s when 
we published a knowledgebase (KB) article about wifi speeds and how to tell 
approximately how fast your device is capable of going.  That one article (out of many 
in the KB) resulted in a sustained reduction of 15% or so in wifi calls.



As software developers, we imagine that the biggest benefits come from complicated 
algorithms, advanced technologies, and big breakthroughs.  But sometimes end users 
are much better off because you add another page or two of documentation.



Who’s the competition?

Competition is “whatever people would do if they don’t use your product.”

● Other mesh projects

● Ethernet/Fiber/Cable/DSL

● Cheap LTE

Coming from the world of capitalism and corporations, we spend a lot of time thinking 
about competitors, and how we’re doing compared to them, and how we can improve 
so we do better than them.  I realize most people here work on community mesh 
projects and don’t like the common capitalism-duel-to-the-death model very much.  
On the other hand, this conference is called “Battle” mesh, after all.  As the lore goes, 
earlier editions of the battlemesh conference had actual competitions between 
different mesh software projects to see which one was better.

When done in that kind of healthy way, competition helps everybody improve, and so 
it benefits everyone.  That’s the kind of competition I’m talking about here, where I 
want to apply some “capitalist” models to the way we think about competition.

The best definition I ever heard about competition - unfortunately I no longer 
remember what book I read it in, but it might have been “Crossing the Chasm” or 
Positioning: The Battle for Your Mind” - is this: your competition is what people are 
considering using instead of your thing.  It’s very important to understand this.  Many 
entrepreneurs get confused when they get started: they’ll find other companies 
working on similar products, say, and consider those companies their competition.  
They usually aren’t, because if a customer hasn’t heard of that other company, the 
customer is not considering them.  If you get to them first, the customer will not have 
an existential debate about whether to use your product or other company’s product.  
They will, most of the time, just debate whether to keep doing what they’re doing, or 
switch to your thing.  Your toughest competitor is usually the status quo.



So I propose that we redefine the “battle of the mesh”; if you want a real battle, it 
shouldn’t be a battle between mesh projects or mesh algorithms or mesh 
communities.  It should be a battle between the real competitors: mesh vs. whatever 
else customers might do to get online.

The next obvious competitor is wired Internet links.  Are customers choosing between 
mesh and, say,, paying for a cable modem connection?  Well, maybe, in some 
places.  But the world is changing fast; people don’t like wires.  If anything, your 
competition is wifi connected via a cable modem, not the cable connection itself.  And 
that’s an easier competitor, because their wifi has most (but not quite all) of the same 
problems as mesh wifi.

But, you might say, our community mesh is mainly to help people in areas where 
wired infrastructure like that is unavailable, or only sparsely available.  Good point!  In 
that case, wired links are not your competition either.

The real competitor is LTE (cellular data).  It’s available almost everywhere, and 
getting cheaper all the time.  Some new market entrants (for example in India) are 
selling very cheap plans targeted at people earning only a few dollars a day, and 
getting really popular.  Virtually everyone in the world might be considering buying an 
LTE phone and plan.  That’s the primary competitor for your wifi mesh.



LTE is easier than wifi, and getting cheaper

LTE Wifi Mesh

Coverage area High signal power Many cheap nodes

Authentication SIMs, auto roaming Captive portals

Mobility Keep your IP address IP address might change

Speed Predictable 
(reserved timeslots)

Variable throughput 
and latency

Technology Expensive base stations 
-> fancy hardware

Cheap 
-> last-gen hardware

Management Central, global, professional Hope

Service 24 hour repair trucks Your 12 year old

Phone calls Actually work Laggy (but with video)

LTE has a lot of advantages over wifi, listed here.

The big and unfortunate disadvantage is that it’s highly centralized, both in terms of 
technical systems (providers often route all traffic back to a central point in a city or 
region before sending it back out again, increasing latency if you want to talk to your 
neighbour), and politics (companies “own” a chunk of public spectrum that they then 
rent back to you).  This kind of centralization, and more things like it, are shaping the 
evolution of the Internet.  It used to be a peer-to-peer network where anyone could 
provide a service without anything telling them what to do.  More and more, you have 
to ask permission from one of a few giant, mostly unregulated, Internet providers and 
service providers before you can do what you want.

I know most of the people here, working on community wifi mesh networks, know all 
this, and respond with a goal of greater openness and less centralization.  That’s the 
sales pitch (and market positioning) that works for you.  But it’s way too complicated 
for most people.  What most people care about, mostly, on a day to day basis, are 
things like what’s in my table here.  Does it work?  Does it work everywhere?   Does it 
connect automatically without hassling me?  Is the speed decent?  If something goes 
wrong, will someone fix it for me?

Next, let’s break down some of those in more detail.



Avery’s laws of wifi reliability
Replacing your router:

● Vendor A: 10% broken
● Vendor B: 10% broken
● P(both A and B broken):

10% x 10% = 1%

Replacing your router (or firmware) 
almost always fixes your problem.

Adding a wifi extender:

● Router A: 90% working
● Router B: 90% working
● P(both A and B working):

90% x 90% = 81%

Adding an additional router almost 
always makes things worse.

First of all, reliability.  All wireless networks, both LTE and mesh, go down sometimes, 
but I’m willing to bet that your wifi network is flakier than your phone’s LTE 
connection.  And of course, at Battlemesh we’re all sitting in a room with dozens of 
experimental misconfigured wifi routers offering open networks that may or may not 
ever successfully route back to the real Internet.  What makes a network reliable or 
unreliable?

After a few years of messing with this stuff (and being surrounded by tons of 
engineers working on other distributed systems problems, which turn out to all have 
similar constraints), I think I can summarize it like this.  Distributed systems are more 
reliable when you can get a service from one node OR another.  They get less 
reliable when a service depends on one node AND another.  And the numbers 
combine multiplicatively, so the more nodes you have, the faster it drops off.

For a non-wireless example, imagine running a web server with a database.  If those 
are on two computers (real or virtual), then your web app goes down if you don’t have 
the web server AND the database server working perfectly.  It’s inherently less 
reliable than a system that requires a web server, but does not require a database.  
Conversely, imagine you arrange for failover between two database servers, so that if 
one goes down, we switch to the other one.  The database is up if the primary server 
OR the secondary server is working, and that's a lot better.  But it’s still less reliable 
than if you didn’t need a database server at all.

Let’s take that back to wifi.  Imagine I have a wifi router from vendor A.  Wifi routers 



usually suck, so for the sake of illustration, let’s say it’s 90% reliable, and for 
simplicity, let’s define that as “it works great for 90% of customers and has annoying 
bugs for 10%.”  90% of customers who buy a vendor A router will be happy, and then 
never change it again.  10% will be unhappy, so they buy a new router - one from 
vendor B.  That one also works for 90% of people, but if the bugs are independent, it’ll 
work for a *different* 90%.  What that means is, 90% of the people are now using 
vendor A, and happy; 90% of 10% are now using vendor B, and happy.  That’s a 99% 
happiness rate!  Even though both routers are only 90% reliable.  It works because 
everyone has the choice between router A OR router B, so they pick the one that 
works and throw away the other.

This applies equally well to software (vendor firmware vs openwrt vs tomato) or 
software versions (people might not upgrade from v1.0 to v2.0 unless v1.0 gave them 
trouble).  In our project, we had a v1 router and a v2 router.  v1 worked fine for most 
people, but not all.  When v2 came out, we started giving out v2 routers to all new 
customers, but also to v1 customers who complained that their v1 router had 
problems. When we drew a graph of customer satisfaction, it went up right after the 
v2 release.  Sweet!  (Especially sweet since the v2 router was my team’s project :)).  
Upgrade them all, right?

Well, no, not necessarily.  The problem was we were biasing our statistics: we only 
upgraded v1 users with problems to v2.  We didn’t “upgrade” v2 users with problems 
(of course there were some) to v1.  Maybe both routers were only 90% reliable; the 
story above would have worked just as well in reverse. The same phenomenon 
explains why some people switch from openwrt to tomato and rave about how much 
more reliable it is, and vice versa, or Red Hat vs Debian, or Linux vs FreeBSD, etc.  
This is the “It works for me!” phenomenon in open source; simple probability.  You 
only have an incentive to switch if the thing you have is giving *you* a problem, right 
now.

But the flip side of the equation is also true, and that matters a lot for mesh.  When 
you set up multiple routers in a chain, now you depend on router A AND router B to 
both work properly, or your network is flakey.  Wifi is notorious for this: one router 
accepts connections, but acts weird (eg. doesn’t route packets), and clients still latch 
onto that router, and it ruins it for everyone.  As the number of mesh nodes increases, 
the probability of this happening increases fast.

LTE base stations also have reliability problems, of course - plenty of them.  But they 
usually aren’t arranged in a mesh, and a single LTE station usually covers a much 
larger area, so there are fewer nodes to depend on.  Also, each LTE node is typically 
“too big to fail” - in other words, it will annoy so many people, so quickly, that the 
phone company will need to fix it fast.  A single mesh node being flakey might affect 
only a smaller region of space, so that everyone passing through that area would be 
affected, but most of the time, they aren’t.  That leads to a vague impression of “wifi 
meshes are flakey and LTE is reliable”, even if your own mesh link is working most of 



the time.  It’s all a game of statistics.



Solution: The Buddy System
Let your friend tell you if you’re making an ass of yourself.

● Router A: 90% working
● Router B: 90% working
● P(either A or B working):

(1-0.9) x (1-0.9) = 99%

Auto-shutdown when flakey is essential.

In the last 15 years or so, distributed systems theory and practice have come a *long* 
way.  We now, mostly, know how to convert an AND situation into an OR situation.  If 
you have a RAID5 array, and one of the disks dies, you take that disk out of 
circulation so you can replace it before the next one dies.  If you have a 200-node 
nosql database service, you make sure nodes that fail stop getting queries routed to 
them so that the others can pick up the slack.  If one of your web servers gets 
overloaded running Ruby on Rails bloatware, your load balancers redirect traffic to 
one of the nodes that’s less loaded, until the first server catches up.

So it should be with wifi: if your wifi router is acting weird, it needs to be taken out of 
circulation until it’s fixed.

Unfortunately, it’s harder to measure wifi router performance than database or web 
server performance.  A database server can easily test itself; just run a couple of 
queries and make sure its request socket is up.  Since all your web servers are 
accessible from the Internet, you can have a single “prober” service query them all 
one by one to make sure they’re working, and reboot the ones that stop.  But by 
definition, not all your wifi mesh nodes are accessible via direct wifi link from one 
place, so a single prober isn’t going to work.

Here’s my proposal, which I call the “wifi buddy system.”  The analogy is if you and 
some friends go to a bar, and you get too drunk, and start acting like a jerk.  Because 
you’re too drunk, you don’t necessarily know you’re acting like a jerk.  It can be hard 
to tell.  But you know who can tell?  Your friends.  Usually even if they’re also drunk.



Although by definition, not all your mesh nodes are reachable from one place, you 
can also say that by definition, every mesh node is reachable by at least one other 
mesh node.  Otherwise it wouldn’t be a mesh, and you’d have bigger problems.  That 
gives us a clue for how to fix it.  Each mesh node should occasionally try to connect 
up to one or more nearby nodes, pretending to be an end user, and see if it can route 
traffic or not.  If it can, then great!  Tell that node it’s doing a great job, keep it up.  If 
not, then bad!  Tell that node it had better get back on the wagon.  (Strictly speaking, 
the safest way to implement this is to send only “you’re doing great” messages after 
polling.  A node that is broken might not be capable of receiving “you’re doing badly” 
messages.  You want a watchdog-like system that resets the node when it doesn’t get 
a “great!” message within a given time limit.)

In a sufficiently dense mesh - where there’s always two or more routes between a 
given pair of nodes - this converts AND behaviour to OR behaviour.  Now, adding 
nodes (ones that can decommission themselves when there’s a problem) makes 
things *more* reliable instead of *less*.  

That gives meshes an advantage over LTE instead of a disadvantage: LTE has less 
redundancy. If a base station goes down, a whole area loses coverage and the phone 
company needs to rush to fix it.  If a mesh node goes down, we route around the 
problem and fix it at our leisure later.

A little bit of math goes a long way!



Auto-configuration (forget about LANs)
Run a hidden SSID that only allows a restricted set of servers (sniproxy)
...at a low speed.

Let any device connect to that SSID and download its configuration.

If configured correctly, the device will connect to a “real” network.

--> Easier cloud configuration workflow

Now that we’ve totally solved the reliability problem (ha ha), let’s change gears for a 
bit.  How do we connect and authorize a new device?

With LTE, it works like this: you buy a device, insert a SIM card, and it just works.  
Behind the scenes, it uses the SIM card to decide what networks it’s willing to talk to, 
then gets its network configuration from the base station, then sets up a network 
circuit.

When I buy a new wifi device from the store, say a Chromecast or an Echo or a wifi 
extender, that’s not what happens.  Even if there’s an open wifi network right there, 
the device sits around and does nothing until you configure it.  Usually the way they 
let you do this is to have the device advertise a separate wifi network that you have to 
join (losing your connection to the Internet), then go to a magic IP address 
(192.168.1.1), then set up the “real” wifi, and then you change your terminal back to 
the main network.  This isn’t so bad if you know what you’re doing, but it’s tedious for 
us techies, and highly confusing for everyone else.

What would be better is if every device could connect up to the Internet right after it’s 
powered on, and download its configuration.  Meanwhile, your laptop or phone, also 
on the Internet, could post configuration settings somewhere on the Internet for your 
new device to pick it up.

The concept of a LAN - a local network with a local subnet where all your personal 
devices are directly reachable by each other, but not by anyone else - is getting 



increasingly obsolete.  First of all, any phone on LTE can’t talk to a “local” device; but 
also, we all move around a lot more than we used to, and we expect to be able to 
access or files, web pages, printers, and other services regardless of what subnet 
we’re on.  One of the few things still relying on the LAN concept is device 
configuration, and it needs to go away.

My proposal here is to define a quasi-standard for *all* wifi devices, where there is a 
well-known (hidden, open) SSID that’s always available for configuration purposes.  
Access points always publish this SSID, and client devices always try connecting to it 
(or maybe they try any open SSID).  The hidden SSID could restrict access to only 
https on a restricted set of services (to be agreed upon somehow by the community), 
and limit throughput, so that nobody providing this SSID would need to worry about 
abuse.  (Someday, I hope everyone can just make all our wifi routers wide open and 
not worry about abuse.  But today is probably not that day, so this is the tradeoff.)

I think this idea could spread pretty fast if we got it into, say, openwrt and convinced a 
few hardware vendors to enable it by default.



Streaming video & rebuffers (isostream)

That covered network reliability and network setup.  Now let’s talk about what people 
actually want to do with their Internet connection, once it’s working, and what prevents 
them from doing what they want.

Most data sent on the Internet today is video, especially streaming video like Netflix or 
Youtube, so the ability to deliver uninterrupted streaming video streams is key to user 
satisfaction.  Other than raw throughput, the key measurements in a video stream are 
time spent prebuffering at the start, and frequency of rebuffering during playback.  
Prebuffering means you have to wait longer before you can start watching.  
Rebuffering means the video stops playing and you have to recover before 
continuing.  Both are annoying.

The two factors are very related.  If it weren’t for rebuffering problems, you wouldn’t 
need prebuffering in the first place.  If you have infinite prebuffering (like if you 
download the entire video in advance), you will never need to rebuffer.

What these factors actually reflect is that available throughput is actually variable, not 
constant.  Sometimes you might get 5 Mbps, but sometimes you might get 1 Mbps, 
and sometimes it will even drop to zero.  Video playback software needs to anticipate 
variable throughput and compensate (either by buffering enough in advance, or being 
able to downshift to lower-rate video in a hurry, or probably both).

We’re not the people who will fix the video playback software.  But as network 
providers, what we can do is try to build a network that can deliver consistent and 

https://github.com/apenwarr/isochronous


slow-changing throughput.  For video, it’s actually massively better to have a 
constant 3 Mbps available than to have a link that goes 5 Mbps some of the time, but 
1 Mbps for a few seconds every now and then.  That’s because with a constant bitrate 
available, even dumb video playback software can figure out what to do.  With the 
bitrate fluctuating wildly, you depend on the video playback people to try to estimate 
what’s available.  And let’s face it, if *you* don’t know how to estimate your own mesh 
throughput reliably (and I bet you don’t), then the video people are probably going to 
do even worse.

This slide happens to contain a plug for my isostream program (link above), which 
sends a constant-rate TCP stream “as if” it were being sent by an especially dumb 
single-rate video streaming system.  It then tracks dropouts (periods in which we fell 
behind real time), their depth (how far behind we fell, a negative number of seconds) 
and their width (how long we stayed behind before catching up, a positive number of 
seconds).  Networks with occasional performance drops will end up looking like this 
chart, which shows several isostream sessions superimposed.  Purple has the worst 
dropouts, but light green and bluey-green also had a couple.  Based on isostream 
data, you could predict the amount of prebuffering needed by your link in order to 
avoid rebuffers during these dropouts.  (For example, purple needed at least ~0.7 
seconds of prebuffering in this example, if we make the simplistic assumption that the 
worst observed dropout is as bad as the worst likely dropout.)

Sporadic mesh routing changes are a huge problem because they can change the 
available throughput suddenly, and (depending on the routing algorithm) sometimes 
frequently, which is the worst case for streaming video.

By the way, queue systems like fq_codel intentionally detect “thin” streams (like 
fixed-rate video streams that don’t try to use all the available bandwidth) vs “thick” 
streams (like http downloads of big files as fast as possible), and try to prioritize thin 
over thick.  The result is that sporadic http traffic has less impact on the available 
throughput for long-term video downloads, causing things to change more gently and 
thus causing fewer rebuffers.  If you can turn on fq_codel on all your links, definitely 
do it!  (But unless you’re also using per-station wifi queues - coming up in another 
slide - don’t set the target latency too low.  Wifi is weird about latency.  For video 
streaming what you need is fq_codel’s auto prioritization feature, more than its 
minimum latency feature.)



Live video & jitter (gfblip.appspot.com, isoping)

That was streaming video, which is responsible for most Internet data transfer today, 
and probably always will be (most people are mostly passive consumers, most of the 
time, which is good because otherwise nobody would have time to read anybody 
else’s content).

A related, yet surprisingly very different, problem is real-time audio and video.  
Streaming Netflix and Youtube isn’t really “real time”, because you can add 
prebuffering to fix most of your problems, at the cost of a bit longer startup time.  But if 
you’re trying to have a phone call or video chat, you can’t just prebuffer 5 seconds of 
video, or it’ll be unusable.  You really want 200-300ms at the most.

300ms should be pretty achievable, right?  You can literally send a signal over the 
Internet to anywhere in the world in less than 300ms.  Problem solved, let’s all go 
home!

Well, hold on.  There are two problems that ruin it for everybody: bufferbloat and jitter.  
You probably already know about bufferbloat.  If you don’t, look it up!  It’s important.  
The short version of bufferbloat is that if you have a huge queue, a bottleneck (like a 
slow wifi link), and a typical network stack, the queue will spend most of its time full, 
and your minimum latency will be defined mostly by the amount of memory you give 
the queue, rather than the actual time it takes to get a packet from one place to 
another.  The more memory you have, or the slower the link, the more latency rises.  
Nowadays there are a few mitigations for this, but they aren’t enabled by default on 
most platforms!  My favourite ones are fq_codel (on routers) and TCP BBR (on 

http://gfblip.appspot.com
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https://www.bufferbloat.net/


endpoints).  Use them.

A related problem is jitter.  Jitter is the variation in latency, which for a live stream, can 
be even worse than consistently high latency.  (Just like in the previous slide, variable 
throughput was worse than consistently lower throughput.)

This slide shows one of my two latency measurement tools, gfblip, which is a 
javascript program that should run on any device with a web browser (including 
phones, tablets, laptops, etc).  It connects to two servers, green (something “nearby”) 
and blue (something “further away”) and repeatedly http-pings the server and plots 
the round trip time.  Note that the y axis is a logarithmic scale rather than linear, so 
green is lower latency than blue, but the big jumps in green would correspond to 
much smaller jumps in blue.  Anyway, reading from the blip chart, you can see that 
green is typically about 30ms, but sometimes jumps to around 90ms.  Blue is typically 
about 100ms, but sometimes jumps to maybe 120, and exactly one blue blip is all the 
way up at 400ms or so.

Quiz question: if I’m having a real-time video chat, how much lag will my audio have 
when talking to green or blue, respectively?

Answer: Many people will calculate that it is (30ms green or 100ms blue) plus a few 
milliseconds for the frame rate (30fps = 33ms/frame), so about 63ms for green or 
133ms for blue.  But they’ve forgotten about jitter.  When streaming live video or 
audio, terrible things happen when a frame arrives later than expected: you have to 
insert “silence” (or garble, or frozen video) and then either throw away the data when 
it finally arrives (so you don’t fall behind) or else intentionally fall further and further 
behind after each incident (effectively this becomes prebuffering, so late deliveries 
should get less and less common because you have higher and higher artificial 
latency).  Different video/audio chat systems use different tradeoffs.  But it’s safe to 
say that if you’re talking to green and don’t converge on the ~90ms (occasional high 
blips) instead of ~30ms (most common low blips) as your baseline delay, you’re going 
to get a lot of dropped frames.  For blue, that ~400ms blip is a real pain, because it’s 
so rare.  The conversation might work great *most* of the time, but every now and 
then, blam, the video freezes temporarily.  People hate that.  The poor 
videoconference software has to choose between glitching the video every now and 
then (in the hope that the big blips are rare) or increasing the constant video delay 
(because it assumes the big blips are not rare enough to be ignored).

As network designers, it’s our job to start thinking about jitter.  This blip chart is 
actually a pretty good one, gathered from an uncongested wifi network (with a wired 
backhaul) back at my office.  At the battlemesh conference where this slide was 
presented, latency and jitter were all over the map, usually < 150ms but sometimes 
rising to 4000ms.  Throughput was wildly variable too.  It was absolutely impossible to 
have a video or audio call using Hangouts or Facetime.



P.S. I also made a command line tool, isoping, which measures latency, jitter, and 
also packet loss, even more accurately.  As a bonus, it can measure latency in the 
receive direction separately from the transmit direction, which is insanely handy for 
debugging wifi.  In wifi, one of the two directions is almost always the source of most 
of your problems, and it helps to narrow it down right away.  (Unfortunately, isoping 
can’t run in a browser because it uses UDP, which is not widely supported in 
browsers.  Maybe some webrtc tricks could work, but then it wouldn’t work on all 
platforms...)



Airtime fairness and latency control

Latency effect on station A of simultaneous traffic to/from station B

And this is where we come to airtime fairness and the newfangled per-station 
queuing(*) that has recently made its way into the Linux kernel (at least for ath9k, and 
soon ath10k, and hopefully eventually many other wifi drivers).  I won’t go into a lot of 
detail about how it works (although it’s really interesting; read Toke’s et al’s paper 
about it).  I’ll just show a quick example of the outcome.

This slide is a set of three blip charts with different latency control settings on the 
(ath9k) access point.  The first one is plain ath9k.  The second one uses per-station 
queues.  And the third one uses per-station queues with artificially inflated maximum 
queue size (to show how the new feature mitigates bufferbloat).  In each of the three 
charts, we ran the same test: latency to station A when station B is idle, when station 
B is downloading, and when station B is uploading, respectively.

In the original driver, when station B started downloading, latency to “green” rose by 
about 10x (remember, it’s a logarithmic y axis, so a bit hard to see).  That’s a change 
from about 15ms to about 150ms.  Latency to “blue” rose by about 1.5-2x (from about 
100ms to about 200ms).  When B was uploading instead, performance was 
completely destroyed, because B hogged as much airtime as it wanted.

With per-station queues enabled on the AP - no extra support is needed on the 
stations themselves - we get the second chart.  During the download section, you can 
see that blue experiences no visible extra latency at all (in reality it’s probably 
~5-10ms higher than the baseline ~100ms).  Green shows an increase, but because 
of the logarithmic y axis, that’s actually the same delta: about 5-10ms higher, but on 

https://arxiv.org/abs/1703.00064
https://arxiv.org/abs/1703.00064
https://arxiv.org/abs/1703.00064


top of 15ms, so it’s still only 20-25ms instead of the 150ms we saw before.  In the 
upload direction, things aren’t perfectly controlled - remember, we actually didn’t 
change any code on the stations, so they are hogging whatever airtime they want - 
but because ACKs get somewhat reduced in the return direction, it’s still considerably 
better than with no latency control at all.

The third plot is mostly of academic interest.  With very large queues available, there 
isn’t much difference from what happens with very small queues (which makes sense, 
because the latency control feature intentionally tries not to fill up the queues, 
preventing bufferbloat problems).  The difference is in the upload direction, which we 
can’t control very well.  Using larger downstream queues allows more ACKs to build 
up in the queue and get forwarded all at once, which allows the upstream direction to 
blast more stuff than we’d like.

Anyway, that’s a very long winded way of saying: y’all, we did it!  There is no excuse 
for your mesh’s per-hop latency and jitter to be more than two-digit milliseconds.  
4000ms is just not okay.  Turn on these features!

[Airtime fairness is also nice: it makes it so that one faraway station running at low 
speed can’t crowd out other stations unfairly.  But that’s actually less important than 
keeping latency under control, and it’s actually a separate feature, so I won’t go into it 
here.]

(*) Google Fiber sponsored research into and partial development of the per-station 
queuing feature.



The Good News

When I do presentations at work, my manager used to warn me, “Avery, everybody 
likes your presentations, but please try not to be too depressing.”  So far, this 
presentation has been a bit depressing.  We talked about how LTE is better and 
easier, how adding repeaters makes reliability worse, how variable throughput screws 
up video streaming, and how variable latency screws up live audio/video.  Not a great 
track record so far.

To balance it out, I’m going to tell you what I think is good news.  There are fewer 
slides in this section.



802.11b 802.11g 802.11n

802.11ac

802.11n 
(5 GHz)

802.11ac
(80+80 MHz or 8x8)

802.11ax

Wifi is getting faster, fast (so is LTE)

First of all, some straightforward good news: wifi is in fact getting faster.  Quickly.  In 
fact, the rate at which it’s getting faster seems to be getting faster.

Okay, cool.  But I still need to make some disclaimers:
- LTE is also getting faster, at about the same rate.
- This assumes 4x4 MIMO wifi clients, which mostly do not exist in the real world 
(although you can buy them if you try really hard)
- I calculated UDP bitrates rather than TCP, which is slightly cheating (TCP needs a 
return channel, UDP doesn’t, and wifi is half duplex so that return channel costs you).
- These rates are the true maximum achievable speed at very short distances, like 
5-10 feet away.  That really does happen sometimes, but not so often.  (Still, the 
speeds at longer distances are increasing along a similar curve, so if you delete the y 
axis labels, the chart would be about right.)

On the other hand, it could be worse.  These rates are definitely lower than the 
“advertised rates” (also known as “marketing lies”) you will find on the cardboard box 
your routers come in.  The rates in this chart are the non-lying, actually achievable 
real world UDP bitrates.  There are actually wifi products that can do >1 Gbps from 5 
feet away now, no kidding.  Welcome to the future!



(But plenty of devices still suck)
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Um, I know this is the good news section, but I thought I’d include an overview of 
about what fraction of devices support what features and what the trendline is.  Sorry 
for the microscopic font sizes.

This data is from Google Fiber’s network on the given dates.  Blue corresponds to 2.4 
GHz, and red is 5 GHz.  The two y axes are normalized, so the tallest bar (1x1 
802.11n) actually represents a different absolute device count in each chart.  What 
matters is the relative bar heights in each chart, not the absolute height.

The main thing to observe is a noticeable increase in 2x2 802.11ac and 2x2 802.11n 
connections, relative to 1x1 802.11n, from December 2015 to January 2017 (about 1 
year difference).  The main thing that happened is that some major phone 
manufacturers started including 2x2 MIMO in almost all their new phones, and 
phones are a huge fraction of wifi activity nowadays.

(The fraction of devices on 2.4 GHz is surprisingly high for the 802.11ac category, but 
at least for 802.11ac-capable chips, that’s mostly caused by 5 GHz-capable devices 
that make poor roaming decisions.)

So, bad news: the previous chart of 4x4 performance isn’t too meaningful yet since 
almost no client devices have 4x4.

But good news: 1x1 devices are rapidly getting eclipsed by 2x2 and higher.  2x2 is 
twice as airtime-efficient as 1x1, which makes a huge difference with congestion.  (It 



also slightly improves maximum range, via antenna diversity.)



Throughput: (4x4) Repeater placement matters

Here’s a slide I thought was really important but I couldn’t think of a better place in the 
presentation to include it.  Sorry if it seems out of place.

These are simulation results for how far apart to place your mesh nodes.  It’s a little 
confusing, but it’ll be important a few slides later, so let’s try to go through it.

First of all, my unit of distance measurement in wifi is what I call AnandSteps, named 
after my former intern who I made do all these experiments.  An AnandStep is how far 
Anand goes when he takes one step.  It’s an intentionally vague distance.  You’ve 
never met Anand, and sometimes he walks fast and takes big steps.  Sometimes he 
takes small steps.  Sometimes he goes around corners.  The point is to not get too 
hung up on exact distances, because with wireless systems, exact distances are 
often less important than other random characteristics of the environment (reflections, 
background noise, walls, etc).  So let’s just say that AnandSteps are a linear-ish 
measure of distance.

In this chart, there are three nodes:
- Primary wifi AP (4x4 MIMO): 0 AnandSteps
- Wifi repeater node (4x4 MIMO, echoing between station and primary AP): “x” 
AnandSteps
- Wifi station (1x1 to 4x4 MIMO): ~70 AnandSteps

There is one line for each type of station (1x1 to 4x4), but in all cases, the APs are 
4x4.  The line corresponds to what happens as you move the wifi repeater from 



location 0 (right on top of the primary AP) to location 65 (very close to the station).  
The y axis is achievable throughput from the station to the primary AP (and thus 
presumably the Internet).

Unsurprisingly, with the repeater at location 0, performance sucks; you might as well 
have no repeater.  As the repeater moves toward the right (further from the primary 
AP, closer to the station), performance goes up, peaks, and then starts declining as 
the repeater gets “too close” to the station (and thus “too far” from the primary AP).

Here’s the really important insight that we’ll need later: a 1x1 station is near peak 
performance when the 4x4 repeater is right next to the station.  That’s because 4x4 
MIMO gets 4x the performance of 1x1.  So you want most of the distance travelled to 
be at 4x4 (between the two 4x4 APs) rather than at 1x1 (between the station and 
some other device).  With a 2x2 station, the ideal repeater location is maybe 2/3 of 
the way along; closer to the station, but not right on top.  With a 4x4 station, the ideal 
distance is roughly halfway, which makes sense since both hops are 4x4.

I don’t think I can emphasize this enough.  4x4 MIMO repeaters help even with 1x1 
stations.  They help a lot.  We’ll talk more about this in a bit.



Performance effect of adding a repeater

(Chart shows 2x2 802.11n client)

Here’s another slide using some of the same simulation/experimental data.  This time 
we use 3x3 repeaters (inconsistent, I know, but I prefer to recycle my old charts rather 
than drawing new ones all the time!) and the x axis is now the location of the station, 
rather than the repeater.  At each point on each line, we assume the repeater(s) are 
placed “reasonably well” (not quite optimally, but somewhere not too far off) according 
to the chart in the last slide.

In this chart, we choose to simulate a 2x2 802.11n client (which is pretty common 
today) to show some interesting effects.

The first interesting effect is the blue line.  That’s what happens if the client talks 
directly to the primary wired AP.  Notice that up to 45 AnandSteps or so, the speed is 
at max.  That’s because 802.11n doesn’t take advantage of extra signal-to-noise ratio 
(SNR) beyond a certain point; this wastes spectrum.  An 802.11ac client, with the 
mysterious new MCS8 and MCS9 encoding levels(*), wastes less airtime if you’re 
lucky enough to be close to the AP.

Beyond a certain distance, direct (blue line) throughput starts dropping off fairly fast.  
This shows an advantage to adding a repeater (red line, Repeater #1).  At certain 
distances, you’re better off doing two short hops rather than one big hop.  And as you 
get even further away, a second repeater (yellow line, three hops) starts to give better 
speeds.

Note: the typical math that says throughput drops by 1/2 with each repeater you add 



(ie. 1/2^n) is just wrong; it’s more like 1/n.  On the other hand, the increase in useful 
range from adding each repeater is fairly disappointing: about 50% more range.  You 
can stretch it more, but then your throughput drops off *really* fast and performance 
sucks.  It’s better to have a dense network of many repeaters rather than repeaters 
stretched over too-long links.

(*) Note that 802.11ac MCS8 and 9 are not the same as 802.11n MCS8 and 9.  In 
802.11n, the standards people committed a major error, defining MCS0-7 as 1x1, 
MCS8-15 as 2x2, MCS16-23 as 3x3, etc.  This left no room to add new modulation 
levels at each number of antennas.  In 802.11ac they realized their mistake, 
undefined MCS8 and up, then redefined MCS8 and 9 as new 1x1 encoding levels.  In 
802.11ac, you always state the number of MIMO streams separately: 1x1 MCS9, 4x4 
MCS4, etc.



The Wireless Innovator’s Dilemma
(Image via coderinsights.com)

I asked at battlemesh how many people had heard of the book The Innovator’s 
Dilemma.  It was surprisingly few, at least compared to business/corporate-type 
people I usually talk to.  Anyway, I recommend that book.  I read it far too late in my 
career, and it’s almost magical at explaining strange phenomena in the computer 
industry that otherwise go unexplained.  This book is the origin of the term “disruptive 
innovation.”  In the spirit of all good clichés, that term used to have a really useful 
meaning that has since been lost.  In particular, they wanted to compare disruptive 
innovations with the much more common “sustaining innovations.”  The big difference 
is that the existing industry leaders are really good at sustaining innovations.  Making 
x86 chips faster, or SSDs or hard disks store more stuff, or whatever, are all things 
that market leaders are good at.  What goes wrong is when something worse 
becomes good enough.  This confuses the leaders every single time.  Think of SSDs 
vs spinning hard drives (mostly different manufacturers) or ARM (slower but power 
efficient) vs x86 (fast but inefficient).

What happens is that the market leader ignores the new thing until it’s too late.  When 
ARM came out, it was tiny, slow, cheap, and low-power.  You’d never imagine trying 
to make a “real” computer with it, because the computer would suck.  A bit later, 
people tried to do it anyway, and sure enough, it sucked.  But ARM slowly ate up the 
low-end areas of computing where low-cost, sucky computers were sufficient.  And 
every year, ARM chips got a little faster.  One day, they got so good that you could 
build a smartphone, and then smartphones got more common than desktop PCs, and 
now x86 makers should be worried.

https://en.wikipedia.org/wiki/The_Innovator%27s_Dilemma
http://coolerinsights.com/2013/03/the-innovators-dilemma-book-review/
https://en.wikipedia.org/wiki/The_Innovator%27s_Dilemma
https://en.wikipedia.org/wiki/The_Innovator%27s_Dilemma


The essential ingredients for an Innovator’s Dilemma are:
- Two competing technologies, which both get better over time
- Customer requirements, which gets higher over time
- The first technology exceeds customer requirements, but the second one is not 
good enough
- But the customer requirements are increasing slower than the technology is 
getting better

When this happens, it’s almost inevitable: eventually, the second technology will 
exceed the customer requirements.  When that happens, suddenly you don’t need the 
first technology anymore.

I want to claim that LTE vs Wifi Mesh is an Innovator’s Dilemma.  LTE and Wifi are 
getting faster very fast, maybe at the same rate, probably both according to some 
variant of Moore’s Law.  But customer demand is increasing slower than that.  There’s 
only so much throughput a consumer needs.  Once you have 60fps, 3D, 4k or 8k live 
video, that’s pretty much all you can consume.  And that’s only, say, 100 Mbps or so 
per stream.  I mentioned a couple of slides ago that wifi (albeit not a mesh, and not at 
long distances) can already do more than 1 Gbps with the latest chips.  And 
theoretical maximum throughput demand isn’t even the whole story...



Bandwidth demand is limited from FCC broadband report

Here’s one of my favourite charts, from a report put together by the FCC (see link 
above).  It shows that around 25 Mbps or so, average web page load times stop 
improving.  That’s because web pages tend to have a lot of back-and-forth requests 
going on, and the load time ends up dominated by latency instead of throughput.

25 Mbps!  LTE can do that now in most places.  Wifi can do it pretty reliably, on 5 
GHz, within a reasonable distance from the AP.  The meshes I tried at Battlemesh 
v10 mostly couldn’t keep up with 25 Mbps, but then again, most of them are still 
802.11n or 802.11a/g based.  802.11ac is twice as fast!  We’re almost at peak.

And anyway, a decent 1080p video stream can be obtained in about 5 Mbps, which 
we can do easily right now, as long as we’re careful about throughput variation, 
latency, and jitter, like we discussed in earlier slides.

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-america-2015#_Toc431901638


Six magic ingredients (airspacetime)
● Time

● Space

● Spectrum

● Modulation

● Beamforming

● MIMO

[The “Beamforming” link above is to my javascript beamforming simulator.  It’s fun.]

In networking we talk a lot about throughput and latency, but in wireless, those aren’t 
the fundamental measurements.  Slightly more advanced discussions talk about 
airtime - the amount of time your radio is on the air, blocking out other people - which 
is useful because it helps figure out total throughput when there are multiple stations.  
For example, if you have two faraway stations talking at 1 Mbps and a nearby one 
capable of 100 Mbps, what total data transfer do you get if they’re all sharing the link?  
In one of the more reasonable worldviews (airtime fairness), the answer is:
    1 / [1/(1Mbps) + 1/(1Mbps) + 1/(100Mbps) ] = 49.75 Mbps
Counterintuitively, you have to do it that way.  You can’t just take the average of the 
three bitrates:
    (1Mbps+1Mbps+100Mbps)/3 = 34 Mbps        [DON’T DO THIS]
because that’s not meaningful physically.

However, airtime is not the whole story either.  A simplistic view of airtime is that if 
one node is sending, no other node can send at the same time.  But that’s not true!  
Besides taking turns (“time” multiplexing), a wifi node in Germany can transmit at the 
same time as one in Canada.  That’s “space” multiplexing.  Nodes can also be on 
different channels (“spectrum” multiplexing).

There are also some more complex effects. Like we saw a few slides ago, adding 
new modulation levels (MCS8 and MCS9) can pack more bits into the same amount 
of time and spectrum; let’s call that increasing “density” via better modulation, up to 

http://apenwarr.ca/beamlab
http://apenwarr.ca/beamlab
http://apenwarr.ca/beamlab


the Shannon limit.  You can also squeeze a little harder on the Shannon limit by 
improving signal-to-noise ratio (SNR) at the receiving end via beamforming, further 
increasing density.  And weirdest of all, if you have multiple antennas on the sender 
and receiver, and the signals from each sending antenna follow a different path to the 
antennas at the receiver, you can use MIMO to send multiple non-overlapping 
signals, through the same space, at the same time, on the same channel.

[Even weirder: you can’t do MIMO with a wired link, unless you have multiple wires.  
But nobody has yet found a theoretical limit for how many wireless MIMO streams a 
particular volume of space can support.  High-end wifi right now can do 4x4, and soon 
8x8, but that’s not even close to the maximum limit.  That means wireless could 
someday actually go *faster* than wired links using the same spectrum.  Maybe 
insanely faster.]

I call this multidimensional expression “airspacetime.”  To depict it, I downloaded an 
image from Google Image Search.  It is apparently a hypercube, viewed through what 
is apparently a hyper-fisheye lens, so that you can see it on your mere 2-dimensional 
display.

If you want to understand how wireless meshes could eventually rule the world, you 
need to be thinking of airspacetime, not airtime.  The next slides will show what I 
mean.

https://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
http://apenwarr.ca/log/?m=201505


Transmit power control saves space
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This is a map I’ve used in previous presentations.  It represents the layout of a 
simplified apartment complex.  For our purposes, the important thing is that the signal 
in one apartment interferes with the reception in the neighbour’s apartment.  In fact, 
even Yellow’s AP talking to Yellow’s STA1 causes interference with Green’s STA2.  
This is an airspacetime conflict that reduces total throughput available to all four 
apartments in the diagram.

We can do better, at least a little better.  Thomas Hühn’s Minstrel-blues transmit 
power control(*) algorithm transmits at lower power to nearby stations, and higher 
power to faraway stations, thus reducing the “space” used when talking to the nearby 
stations (STA1 in the diagram).  Reducing space reduces airspacetime, which frees 
up airspacetime for other people to use, at no real cost.

This sounds obvious, yet in the wifi world it previously ranged from rare to unheard-of.

(*) Google Fiber sponsored work to bring minstrel-blues to ath9k (and hopefully 
eventually ath10k)

https://github.com/thuehn/Minstrel-Blues
https://github.com/thuehn/Minstrel-Blues
https://github.com/thuehn/Minstrel-Blues
https://github.com/thuehn/Minstrel-Blues


Wider channels save time
● We should use channels 1, 5, 9, 13 instead of 1, 6, 11

● Sending 1M on an 80 MHz channel takes the same spacetime as on a 40 
MHz channel, but less time

“Bandwidth is the ultimate perishable resource; use it right now,
 or it’s gone forever.”  -- Stuart Cheshire

Saving the space part of airspacetime is fairly straightforward (once you accept that 
reducing power means you take less space).  This one is slightly trickier.

My claim is that if you send the same data over a double-wide channel (40 MHz 
instead of 20 MHz, say), and thus take half the time (because thanks to the extra 
spectrum, it goes at twice the speed), then you are overall better off.

But didn’t we just finish saying that airspacetime is one single thing?  If we use twice 
the spectrum and half the time, the total volume of airspacetime is the same, right?

Well, yes.  But there’s a catch.  I once saw a talk by Stuart Cheshire in which he said 
something like, “Bandwidth is the ultimate perishable resource; use it right now, or it’s 
gone forever.”  Unlike the other elements of airspacetime, the “time” component is 
special.  If nobody uses a particular timeslot, it’s wasted.  Forever.

Let’s imagine we have a channel capable of 16 Mbps (2 MBytes/sec).  Station A 
wants to transfer 20 MBytes.  Station B wants to transfer 2 MBytes.  If they share the 
big channel, the total will take 22 MBytes / 2 MBytes/sec = 11 seconds.  But if we give 
them each a half-sized channel, each 8 Mbps (1 MByte/sec), then the transfer will 
instead take 20 seconds on channel A, and (simultaneously) 2 seconds on channel B.  
Channel B will be idle (wasted) for the other 18 seconds.  The total airspace used will 
be the same, but the airspacetime consumed will be double what it was with one wide 
channel.



Weird, right?

Now, people who have being doing this mesh stuff for a while will rightly complain, 
“Hold on, what about hidden nodes?”  That’s a good point.  (Follow the link if you 
don’t know what hidden nodes are.)  However, it’s becoming less of a good point over 
time.  First of all, there are not enough wifi channels; you will have hidden nodes no 
matter what you do.  Secondly, 802.11n and later use aggregation (much more 
efficient channel utilization), which reduces the impact of hidden nodes. Thirdly, a lot 
of problems with hidden nodes were actually caused by naive rate control 
algorithms(*) that died badly when they encountered interference.  Nowadays, most 
chipsets have that problem fixed.  Hidden nodes are not as big a problem as they 
used to be.

But even more importantly, this advice - using fewer big, wide channels instead of 
more narrow channels - decreases channel utilization.  If we assume, as discussed in 
the earlier slide, that user demand for throughput is increasing slowly, but capacity is 
increasing quickly, then we can also assume that channel utilization (the % of time 
the channel is in use) will eventually start to fall.  As utilization falls, the probability of a 
collision with a hidden node falls even faster.  If we trust in this effect, then we should 
trust that using wider channels, and thus decreasing utilization, will make it come true 
even sooner.  And that’s why the IEEE wifi people are not crazy to be talking about 80 
and 160 MHz wide channels that eat almost the whole 5 GHz spectrum allocation all 
at once.  It’s just good math!

This leads me to one more side note: this is good advice even on 2.4 GHz, where 
traditionally 40 MHz wide channels are almost impossible due to historical channel 
allocation mistakes.  Typical industry practice has slowly converged on using 
channels 1, 6, and 11 as the “main” 2.4 GHz wifi channels.  This is based on the 
ancient 802.11b modulations, which could sometimes use up to 22.5 MHz per 
channel (about 4.5 channels wide).  Modern 802.11n and later modulations only use 
20 MHz for channel, which is why the 802.11 spec says to space wifi 4 channels apart 
(20 MHz each): we no longer need to care about 22.5 MHz.  It would actually be best 
if we followed the same rules on 2.4 GHz.  That would give us several benefits: first, if 
only channels 1 and 5 are used in the bottom half of the range, we could combine 
them and make a 40 MHz channel; second, in countries where wifi channel 13 is 
allowed, this new spacing fits channel 13 without overlap, and that could combine with 
channel 9, giving a *second* 40 MHz channel.

I’ll probably never be able to convince people to stop using 1, 6, 11. But if you’re 
writing a channel selection algorithm, I suggest helping out the world a bit by at least 
using 1, 5, 11 (North America) or 1, 5, 9, 13 (in regions with channel 13) instead, 
where channel 6 isn’t already being used.

(*) Very briefly: a naive rate control algorithm will transmit at a slower rate if packets 

https://en.wikipedia.org/wiki/Hidden_node_problem


are getting lost, and a faster rate if everything is perfect, based on the assumption 
that if packets are getting lost, there must be some background noise.  That makes 
sense for pure white noise, but it doesn’t work with bursts of interference (such as 
from hidden nodes): if there are short bursts of interference destroying some of your 
packets, you will actually do better by *increasing* the transmission rate, because 
then your packets will be smaller, and thus less likely to overlap with an interference 
burst!  Modern rate control, such as minstrel, now does this.



MIMO is free!*

● More MIMO streams take less spacetime for the same content

● ...although you need fancier silicon
(but chips keep getting cheaper)

● Moore’s Law still continues here

* Except it costs money

Let’s talk a bit more about MIMO, because MIMO is completely amazing.  I don’t think 
enough people realize how amazing MIMO is.

If you have 2x2 MIMO, you can fit twice the bits in the same amount of airspacetime 
compared to 1x1.  If you have 4x4 MIMO, that’s four times the bits.  And so on.  And 
there are no known limits to how far you can scale it, other than some pretty minor 
things (eg. your antennas need a certain minimum distance between them).  That 
makes increasing MIMO usage “free” in terms of airspacetime: you can keep using 
more MIMO without interfering with anybody else.

There are some restrictions though:

- The more MIMO streams you have, the more math is needed in order to do the 
modulation.  I’m not sure, but since receiving the signal effectively involves inverting 
an NxN matrix, I think the computing power required may increase slightly faster than 
O(N) with the number of streams.  Luckily though, Moore’s Law seems to be 
continuing in the world of massively parallel digital signal processing (despite having 
slowed down in single-threaded processing).  There’s a lot more room for more MIMO 
streams.

- Antenna placement makes it really tough to fit more antennas in tiny mobile devices 
like phones.  Phones are probably going to be stuck at 2x2 for a while.  Tablets and 
laptops have lots of room for more antennas though, if demand gets high enough (or 
costs drop low enough, which they will).



Still though, remember from a previous slide that even if your phone never hits 4x4 or 
8x8 MIMO, you’ll still benefit if your wifi mesh uses 4x4 or 8x8.  What that means is 
we want a world where there are lots and lots of APs, maybe even one per room, in 
order to deliver the signal as close as possible to the end-user device so that we 
waste as little airspacetime as possible talking to cheap devices with fewer MIMO 
antennas.



Multi-radio repeaters are mostly obsolete
Quiz: which is better?

1. A 2.4 GHz 2x2 radio + a 5 GHz 2x2 radio

-- or --

2. One 5 GHz 4x4 radio

?

And now, let’s tie it all together.  Based on what we just learned, which one of these 
two situations is better?  Two 2x2 radios or one 4x4 radio?

When I asked this question at Battlemesh, someone pointed out that if your client 
device is 2.4 GHz-only, then you really need the 2.4 GHz radio.  Okay, fair enough.  
But those devices are slowly declining.  (If you really need them, and slow LTE isn’t 
good enough for them, you could strategically add a few 2.4 GHz radios here and 
there to cover the ancient devices.  You don’t need too many 2.4 GHz APs since most 
devices will migrate to 5 GHz, leaving only a few left fighting for spacetime.)  And for 
the purposes of this slide, let’s think of just a mesh backhaul.

The other people who answered also picked #1 though, for reasons that all revolved 
around trying to avoid channel overlaps and interference.

Here’s my claim: long term, the correct answer is #2.  Each “stream” costs about the 
same, whether it’s divided into two 2x2 radios or one 4x4 radio.  The total compute 
power (4 streams) and total antenna cost (4 antennas) is the same in both cases.  But 
in case #2, you have twice the airspacetime density of case #1.  You can pack twice 
the bits in the same amount of airspacetime!  That means you can have either twice 
the total throughput, or half the utilization (and thus far fewer collisions with hidden 
nodes).  It should be no contest, as long as we get all the necessary parts (especially 
rate control and transmit power control) working.

The net result is that the whole concept of multi-radio repeaters is becoming obsolete.  



It’s just kinda wasteful to be thinking about old-fashioned wavelength division 
multiplexing (multiple channels), rather than dumping everything onto one giant 
channel, with a single radio, and using time division multiplexing instead.  As an 
added bonus, this makes the electronics, mesh routing, and channel selection 
simpler.

The exception is if you really want/need to take advantage of multiple completely 
different spectra, like 900 MHz, 2.4 GHz, 5 GHz, 30 GHz, 60 GHz.  Right now that 
needs multiple radios.  Maybe someday, if software-defined radio (SDR) gets cheap 
enough, even that can all be done with a single giant MIMO radio.  Well, at least we 
can dream.



Summary
● The next battle isn’t between meshes, it’s between mesh and LTE.

● We’re at a supply/demand intersection point.
If there was ever a time to build big, fast wifi meshes, it’s now!

● Use more MIMO streams!  If we cut congestion, everything works better.

● Always use latency/jitter controls on your queues
...and turn on transmit power control if you can.
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MIMO MIMO MIMO.  Start installing mesh routers with as many MIMO streams as 
possible.  That could totally change the equations around mesh networking.

And turn on those newfangled latency control features!  They really help more than 
you think!

The end.


